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THE IMPORTANCE OF SEMI-MAJOR AXIS KNOWLEDGE IN THE
DETERMINATION OF NEAR-CIRCULAR ORBITS

-

J. Russell Carpenter and Emil R. Schiesser’

Modemn orbit determination has mostly been accomplished using Cartesian coordinates. This usage has
carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented posi-
tioning accuracy of GPS has tended to focus attention more on the system’s capability to locate the space-
craft’s location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-
known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between
their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can
lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit ad-
justment maneuvers.

For the quite common case of near-circular orbits, the degree to which position and velocity esti-
mates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly pro-
duce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist
for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are
the following: (1) downrange position error grows at the per orbit rate of 3n times the SMA error; (2) a
velocity change imparted to the orbit will have an error of nt divided by the orbit period times the SMA
error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequen-
tial orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the
covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construc-
tion of the initial covariance accomplishes half of this objective, by specifying the partition of the covari-
ance corresponding to down-track position and radial velocity errors. The remainder of the in-plane co-
variance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illus-
trates the effect of properly and not properly initializing a covariance. This figure was produced by propa-
gating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period
is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their
correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial
position coordinates, of about half of the lower subplot, whose initial covariance was based on other con-

siderations.
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THE IMPORTANCE OF SEMI-MAJOR AXIS KNOWLEDGE IN THE
DETERMINATION OF NEAR-CIRCULAR ORBITS

J. Russell Carpenter” and Emil R. Schiesser'

In recent years spacecraft designers have increasingly sought to use onboard Global
Positioning System receivers for orbit determination. The superb positioning accu-
racy of GPS has tended to focus more attention on the system's capability to deter-
mine the spacecraft's location at a particular epoch than on accurate orbit determina-
tion, per se. The determination of orbit plane orientation and orbit shape to accept-
able levels is less challenging than the determination of orbital period or semi-major
axis. It is necessary to address semi-major axis mission requirements and the GPS
receiver capability for orbital maneuver targeting and other operations that require
trajectory prediction. Failure to determine semi-major axis accurately can result in a
solution that may not be usable for targeting the execution of orbit adjustment and
rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating posi-
tion, velocity, and semi-major axis are useful in design and analysis of GPS receivers
for near circular orbit operations, including rendezvous and formation flying mis-
sions. Space Shuttle flights of a number of different GPS receivers, including a mix
of unfiltered and filtered solution data and Standard and Precise Positioning Service
modes, have been accomplished. These results indicate that semi-major axis is often
not determined very accurately, due to a poor velocity solution and a lack of proper
filtering to provide good radial and speed error correlation. '

INTRODUCTION

For most people familiar with celestial mechanics, the Keplerian elements are among the
most intuitive of the various parameterizations of orbital motion. However, in the modern
era, orbit determination has mostly been accomplished using Cartesian coordinates. The us-
age of Cartesian parameters has carried over in recent years to the use of the Global Posi-
tioning System (GPS) for satellite orbit determination. The unprecedented positioning accu-
racy of GPS has tended to focus attention more on the system’s capability to locate the
spacecraft’s location at a particular epoch than on its accuracy in determination of the orbit,
per se. As is well known, the latter depends on a coordinated knowledge of position, veloc-
ity, and the correlation between their errors. Failure to determine a properly coordinated po-
sition/velocity state vector at a given epoch can lead to an epoch state that does not propagate
well, and/or may not be usable for the execution of orbit adjustment maneuvers. With a few
elementary equations from celestial mechanics, the authors and their colleagues have devel-
oped a handy set of back-of-the-envelope guidelines and charts which have been found use-
ful in analyzing and designing orbit determination systems for near-circular orbits. It is
hoped that dissemination of these rules of thumb will help to refocus attention, especially
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among the rapidly expanding community of GPS orbit determination users, on the impor-
tance of determining the whole orbit, not just the satellite’s position.

g

Coordination of Position and Velocity

Many aspects of the degree to which position and velocity estimates are properly coordinated
are captured by the error in semi-major axis (SMA) their own errors jointly produce. These
errors in position and velocity can be considered to be knowledge errors in the current orbit,
or maneuver execution errors created in trying to achieve an orbit change. Kepler discovered
that for an ideal orbit, the square of the period is proportional to the cube of the semi-major
axis. Thus, the magnitude and degree of proper coordination of position and velocity knowl-
edge errors, as measured by the error in SMA, is equivalently to a statement of the knowl-
edge error in orbit period. Letting 7, denote the period, and a denote the SMA, Kepler’s law

may be written'
3
T,= 21&/%, M

where p = GM, the product of the gravitational constant, G, and the planetary mass, M.
Taking variations on Eq. (1), it is easy to show” that a variation, 8a, in the nominal SMA,
leads to a variation in period, 87, given by

8T, = 31r\[§5a. )

- Based on the principle of conservation of energy, it can also be shown' that the sum of ki-
netic and potential energy must be a constant, -u/(2a). Thus, SMA knowledge is also an in-
dication of knowledge of the orbit’s energy. Letting v denote the velocity magnitude and r
denote the position magnitude, the energy integral may be written

1,27 o)

a r u

from which the following variational equation is apparent:

izﬁa =£28r +26v. @)

a r u
One drawback to Eq. (3) is that it is based on Kepler’s two-body potential. For real orbits,
the J, oblateness term alone causes variations on the order of a few kilometers per orbit. For'
this reason, so-called mean element sets are often useful. However, this paper is primarily
concerned with the effects and analysis of variations in the osculating semi-major axis, which
is derived from the instantaneous position and velocity. A useful indicator of the coordina-
tion of the directions of the position and velocity vectors is the flight-path angle, v, which is
the complement of the angle between the velocity vector, v, and the position vector, r:

brisiny =r-v. (5)



Many orbits of practical interest, such as low Earth orbits (LEQ) and geosynchronous Earth
orbits (GEO), are nearly circular. In such orbits, one can assume that the velocity is ap-
proximately the circular orbit velocity (u/r)'?, and thata ~ r. With these assumptions,
Eq. (4) simplifies to Eq. (6): -

da = 28r+£’:8v (6)
v

To simplify Eq. (5), one may also assume that sin(y) ~y~ 0. It is also useful to consider an
orthogonal set of perturbations in the radial, along-track, and cross-track directions, du, ds,
and dw, and their time derivatives, denoted by overdots. In terms of the notation used above,
du = &r, and for near-circular orbits, 85 ~ 5v. Then, Eq. (5) simplifies as follows:

8y = [r, 0, 0]- [54, 85, 8w]+]0, v, 0]- [5u, Bs, Sw]
= rdu + vds

Proper coordination of position and velocity for near-circular orbits means that in-plane per-
turbations in position and velocity must balance one another in order to preserve the semi-
major axis (i.e. period, energy) of the nominal or targeted orbit. Proper coordination also
preserves the approximately zero flight-path angle (i.e. zero eccentricity) of the orbit. Thus,
Eq. (6) tells one that if 8a is held to zero to preserve the nominal or targeted SMA, a change
in (down-track) velocity must be balanced by a radial change in position:

Su=-L8s. (8)
: v

(M

For LEO cases, the ratio /¥ is approximately 1000. Thus a 1 meter per second down-track
velocity perturbation must be balanced by a —1000 meter radial position perturbation if SMA
is to be maintained. Also, Eq. (7) tells one that if 8y is held to zero to preserve the nominally
zero flight-path angle, then a change in along-track position, 8s, must be compensated by a
change in radial velocity:

S = -§5s., )

The same ratio of approximately 1000 to 1 appears for LEO cases, so that a 1 meter per sec-
ond perturbation to radial velocity must be balance by a ~1000 meter change in down-track
position, if near-zero flight-path angle is to be maintained. The authors have found Egs. (8)
and (9), especially in the form of the two “1000 to 1” rules for LEO cases, to be useful and. .

easy to remember.

Problems Caused by Poor Semi-Major Axis Knowledge

Down-track error growth. A familiar example of problems caused by inaccurate SMA
knowledge is down-track position error growth. This problem arises because any SMA error
will produce a period error (Eq. (2)); thus the satellite will complete more or less than one



actual revolution during its nominal period. For near-circular orbits, the resulting along-track
error for one revolution is

ds =-v8T,, . (10)

where the negative sign convention recognizes that if the actual period is less than nominal,
the satellite ends up farther along in its orbit than nominal, which is taken to be a positive
along-track error. If one substitutes Eq. (2) into Eq. (10), and takes the velocity to be the cir-
cular orbit velocity, then one finds that

Os = -3nba, (11)

which is a common rule of thumb for down-track error growth?.

Manuever execution errors. In the case of an instantaneous maneuver, there is no position
change, so Eq. (8) states that unless any total velocity error (knowledge plus maneuver exe-
cution error) is balanced by a corresponding radial position knowledge error, there will in-
evitably be a semi-major axis error. Correspondingly, if position and velocity knowledge
errors are properly coordinated, then the SMA error resulting from an instantaneous maneu-
ver will be solely due to maneuver execution errors. Thus, for a given maneuver execution
error magnitude, the error in the resulting SMA is minimized if position and velocity are
properly coordinated.

Covariance matrix propagation. A less familiar example occurs in the problem of initializ-
ing the covariance matrix for a sequential orbit determination filter that uses Cartesian coor-
dinates. One of the advantages often cited in favor of sequential filtering is that the entire
state need not be fully observed at any given epoch, because observability of the in-plane
projections of the state occurs over time due to correlations inherent in the dynamics of or-
bital motion. However, an initial covariance consistent with the parameters of the orbit must
also be used if the covariance is to propagate well during the period in which insufficient
measurements to fully observe the state are available.

For many orbits, the two simple rules of thumb given by Eqs. (8) and (9) may be used to
specify the in-plane diagonal elements of an appropriate initial covariance matrix (a more
detailed discussion of semi-major axis uncertainty and correlations among the covariance
matrix elements is given in the subsequent section). One should use Eq. (8) to specify the
partition of the covariance corresponding to down-track position and radial velocity errors
that are consistent with the SMA error of the initial state. For near-circular orbits, the re-, .
mainder of the in-plane covariance partition may be specified using Eq. (9) to specify radial
velocity and down-track position errors that are consistent with the flight path angle error of
the initial state.

Figure 1 illustrates the effect of properly and not properly initializing the covariance. This
figure was produced by propagating the initial covariance shown on the plot, without process
noise, in a circular low Earth orbit whose period is 5828.5 seconds. The initial and final val-
ues of the SMA uncertainty (computed using Eq. (15) shown in the next section) are given at
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Figure 1: Comparison of covariance propagation with and without consideration
of SMA and flight-path angle relationships in the construction of the initial co-
variance.

the top of each plot. The upper subplot, in which the proper relationships among position,
velocity, and their correlation have been used, shows overall error growth, in terms of the
standard deviations of the inertial position coordinates, of about half of the lower subplot,
whose initial covariance was based on arbitrary considerations. Note how close the radial
position error comes to zero just before 6000 seconds in the lower subplot; this is a warning
sign that one of the eigenvalues of the covariance matrix may be about to become non-
positive.

SIMPLE FORMULAS FOR SEMI-MAJOR AXIS UNCERTAINTY

This section illustrates some simple formulas and charts that relate the statistical variance of
the Cartesian states to the semi-major variance. Modification of these formulas for relative

navigation applications is also discussed.

1
v

Absolute State Semi-major Axis

One may regard semi-major axis as a non-linear function of the Cartesian state vector
x=[r, v']. Then, a first order approximation that relates changes in the state away from a
nominal value (denoted by the subscript 0) to changes in the SMA is given by



4 (c-x) (12)

Letting

oa
A(xo) = a

T T
=2t 1| (13)
s, I,

where the partial derivative has been evaluated assuming a two-body potential, one may
write the error variance of the SMA in terms of the state error covariance using Eqs. (12)
and (13) as follows:

E[(a - ao)Z] = E[ Ax, Yx - x, ) x-x,)" A(x, )T]

oi(x,)= A(Jco)PxA(Jco)T

In deriving Eq. (14), the symbol “E” denotes the expectation operator, and P, is the state er-
ror covariance matrix. In Reference 2 one finds the following simplification of Eq. (14),
valid for near-circular orbits:

T T\
c,=2./c’ +2(—L)p,,jcu0'3 +(—L) o’. (15)
2r 2r

In Eq. (15), p,; denotes the correlation coefficient between radial position error and down-
track velocity error, and o, and o, denote the radial position error and down-track velocity
error standard deviations, respectively.

(14)

The authors have found Eq. (15) to be a useful design and analysis aid, especially in graphi-
cal form. Also, either Eq. (14) or Eq. (15) is useful as a “figure of merit” for orbit determi-
nation filters. Figure 2 shows one means of graphically representing Eq. (15) for LEO sce-
narios. Figure 2 depicts several families of relationships among the principal contributors to
SMA uncertainty for a LEO mission. Each family of curves illustrates a subset of the range
of radial position and down-track velocity errors that generate the same SMA error, from
0.1 meter to 1000 meters.

Along the main diagonal of the chart, the families split based on the value of the correlation .
coefficient. The correlation coefficient captures the deterministic relationship implied among

the radial position and down-track velocity errors by Eq. (8). To the extent that these errors

are properly coordinated, a given level of knowledge about either one implies some degree of
knowledge about the other. The coefficient is negative because of the negative relationship

stated by Eq. (8). The region of the plot in which the families split corresponds to a “sweet

spot” of proper coordination among position and velocity.



At one extreme, radial position and down-track velocity errors are completely uncorrelated
(p =0), and the SMA error is bounded below by the lower of its corresponding radial posi-
tion and down-track velocity errors. For example, no matter how good position knowledge
gets, SMA knowledge will be no better than about 100 meters if downStrack velocity knowl-
edge cannot be improved beyond about 0.05 meters per second. However, if radial position
and down-track velocity errors are properly coordinated (via Eq. (8)), the SMA knowledge
can be dramatically improved, because a corresponding increase in the correlation among
radial position and down-track velocity errors is possible. For example, using the “1000 to
1” rule of Eq. (8), a radial position error of 100 meters should correspond to a down-track
velocity error of about —.1 meters per second. As Figure 2 shows, this combination could
correspond to an SMA error of about 100 meters if the correlation coefficient is -.9, but
would only correspond to an SMA error of just under 300 meters if the correlation coefficient
is near zero. A coefficient near the value one would expect if Eq. (8) were nearly exactly
satisfied (~ —0.99) would give an SMA error on the order of 30 meters. In the limit, the coef-
ficient reaches —1, the horizontal and vertical branches on the plot disappear, the random
variables become simple deterministic variables, and the linear relationship of Eq. (8) is de-
picted as a straight line from lower left to upper right.



Relative State Semi-major Axis

For some missions involving one or more vehicles, such as rendezvous and docking or for-
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Figure 2: Semi-major axis uncertainty relationships for a typical low Earth orbit.

mation flying missions, a parameter of interest is the relative SMA, i.e. the difference in
SMA between pairs of vehicles. To illustrate, suppose a “chaser” spacecraft is attempting a
rendezvous with a target spacecraft. Denoting the chaser SMA by a,, and the target SMA by
a, the relative SMA is

a,=a,—a,. (16)

Since a, is a function of the chaser state x, and g, is a function of the target state x,, in deriv-. .
ing the uncertainty of the relative SMA it is useful to define an augmented state consisting of
both the chaser and target states: x'= [x,7 x,"]. Then, as in Eq. (12), a perturbation in the
nominal relative SMA may be approximated by

a,—a zag;'xu’(x—x‘,). a7

rel rel,

Using the notation of Eq. (13), the partial derivative is evaluated as follows:
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(18)

T T T T
= 2ac2 LB,E_ ,-—2a‘2 LS.,XI_
A Il w

A(x,) =[4.(x,). - 4(x)]

The covariance of the chaser/target state, P,, may be partitioned into chaser-only and target-
only covariances (P, and P,), and their cross-covariance matrices (P.):

£ 5
P = pT pl (19)
ct 4

X=X,
4 Al

Using Eqs. (18) and (19) in Eq. (14) results in the following:
£ F,
R CTEENIEN) (] YRR |

= APAT + APA - AP A - (4P4)

(20)

FLIGHT PERFORMANCE SURVEY

Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered
and filtered solution data and Standard and Precise Positioning Service modes, have been ac-
complished. Both absolute state and relative state performance have been evaluated. Par-
ticular interest has been given to the semi-major axis performance of the GPS receivers and
any associated filtering algorithms, to determine if the GPS has the potential to replace or
augment existing navigation sensors.

Absolute State Flight Performance

Absolute state flight data results are shown in Table 1, and in Figure 3, the flight data are
overlayed on a copy of Figure 2. The data used in constructing these tables was extracted
from Refs. 3-6, and from various internal documents. In some cases, either velocity or SMA
data were not available. In general, the flight data indicate that semi-major axis is often not
determined very accurately, typically due to a poor velocity solution and/or a lack of proper
filtering to provide good radial and speed error correlation. Note that the flight data are all
from LEO missions, but have periods varying by a few minutes from the nominal period of
90 minutes used to construct the figure.

It is interesting to observe that nearly all the flight data lie above the diagonal region in Fig-
ure 3 previously described as the “sweet spot” for proper coordination of position and veloc-
ity. This indicates that GPS is generally determining position too accurately in comparison
to its velocity accuracy for it to produce SMA accuracy comparable to its position accuracy.
Cases J and B happen to lie in the “sweet spot,” but Table 1 reveals that their SMA accuracy
corresponds to a near-zero correlation coefficient. Thus, these cases are not taking advantage
of the potential improvement in SMA to the order of 10-30 m they could otherwise achieve.



To establish performance, the flight data are compared to best estimated trajectories (BETs),
generated with various procedures. Most of the BET procedures have been verified to be ac-
curate to about 30 meters RMS in position and a few hundredths of a nieter per second RMS
in velocity’. The Post-flight Attitude and Trajectory History (PATH) BET is probably less
accurate in position, but more accurate in velocity, than the Wide Area Differential GPS
(WADGPS) BET. (The PATH accuracy is specified to be on the order of 200 meters in po-
sition and 0.2 m/s in velocity RMS in the worst axis, but it is generally believed to be much
better.) In some cases, filtered position data from an independent, PPS-capable GPS receiver

Syma (Semi-major Axis Uncertainty) [meters] for orbit period = 90 min
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Figure 3: Semi-major axis uncertainty flight data results overlayed on SMA un-
certainty relationships for a typical low Earth orbit.

was used as the BET. These BETs are believed to be slightly more accurate in position than
the WADGPS BET, and comparable to the PATH BET in velocity.
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Relative State Flight Performance

NASA has jointly performed two relative GPS (RGPS) navigation flight experiments
with the European Space Agency (ESA)®. During these experiments, a near-realtime
relative GPS Kalman filter processed data measurement data from GPS receivers aboard
the Space Shuttle and a free flying satellite deployed and retrieved by the Shuttle. This
filter was designed to estimate common biases affecting GPS receivers aboard two co-
orbiting spacecraft tracking the same GPS satellites. When measurements from at least
four common satellites are available, it is expected that differential GPS accuracy could
be obtained. Table 2 summarizes the performance from these missions. It should be
noted that an ESA-developed Kalman filter processed the STS-80 data postflight and
achieved results similar to, or slightly better than, the STS-80 results quoted in Table 2.

These data may be compared with Table 3, which shows typical performance of the ex-
isting Shuttle rendezvous navigation system. The existing system consists of a rendez-
vous radar providing range, range-rate, azimuth and elevation measurements to an ex-
tended Kalman filter that also utilizes acceleration data from an inertial measurement

Table 3
PERFORMANCE OF EXISTING SHUTTLE
RENDEZVOUS NAVIGATION SYSTEM ON STS-80

Velocity (nvVs)
In-track | X-track
0.023 { 0.015 ] 0.008

Position (m)
In-track | X-track

Radial

unit. The data were derived by comparison of the downlinked Shuttle relative navigation
data to a laser-based best estimated trajectory (BET) produced after the flight. In par-
ticular note that although the relative GPS position accuracy of Table 2 is somewhat bet-
ter than the relative position accuracy of the Shuttle’s existing system shown in Table 3,
the SMA accuracy is more than twice as inaccurate. The performance difference is pri-
marily due to poorer relative velocity estimates from the RGPS filter, but also due to
poorer correlation among position and velocity errors.

Another approach to GPS relative navigation is to directly difference the solutions from
two GPS receivers, rather than process the measurement data from both receivers in a

Table 4
STATE VECTOR DIFFERENCING PERFORMANCE
DURING STS-80 RGPS FLIGHT EXPERIMENT

Sol Measure- ' Position (m) Velocity (m/s) SMA (m),

Det/Filt ment Radial { In-track ] X-track RSS Radial | In-track ] X-track RSS
— - —
dd C/A _C/A 138.0 51.7 57.0 158.1 1.699 0.949 0.550 2.022 | 1706.0

single Kalman filter as described above. Such an approach is obviously much simpler,
but does not remove the common error sources. As Table 4 shows, the state vector dif-

12



ferencing performance data from STS-80 show significantly worse performance than the
filtered results Table 2 presents.

However, if the receivers can be operated under the Precise Positioning Service (PPS),
with dual-frequency P/Y-code measurements, most errors larger than a few meters are
removed. Under such circumstances, it could be feasible to perform GPS relative navi-
gation using state vector differencing. Although no known flight experiments have been
conducted using the PPS, Table 5 shows an attempt at bounding the peiformance of such

Table 5
STATE VECTOR DIFFERENCING PERFORMANCE SURVEY
DERIVED FROM TABLE 1 FLIGHT DATA

Sol Measure- Position (m) Velocity (m/s) SMA (m)
Det/Filt ment Radial | In-track | X-track | RSS Radial | In-track | X-track RSS

) CACA L 921 | 600 1 67.0 | 128.7 | 1055 | 0703 | 0703 | 1.450 | 14453
d, C/AC/A | 837 | 522 | 591 | 1150 | 0872 | 0582 | 0589 | 1.203 | 1076.0
B P A CAY. ].. 652 1.425 1 475 1.91.2 10746 | 0498 | 0498 | 1.026 | 10233
f.f | CACA | 743 | 430 | 498 | 993 | 0639 | 0429 | 0448 | 0891 | 475.9
SO0 S CIAX...}.. 52.7.1.306 1 383 | 704 1.0453 | 0305 | 0317 | 0631 [ 3403
ff Y.Y 46 38 3.0 67 | 0039 | 0041 | 0024 | 0061 | 715

a configuration, using the absolute state performance data from Table 1. In Table 5, the
values were obtained by computing the root sum squares of the overall absolute state per-
formance figures at the bottom of Table 1, assuming that the errors in the two receivers
are uncorrelated (i.e. P, = 0). Table 5 contains figures for both absolute states computed
deterministically by the receivers, and absolute states resulting from onboard orbit deter-
mination filters (denoted “d” and “f,” respectively, in the first column).

Clearly, although filtering the data helps significantly, state vector differencing, even if
one of the two receivers is P/Y-code capable, is not competitive with either the RGPS
filtering approach or the existing Shuttle rendezvous system capabilities (viz. Tables 2
and 3). However, the data representing filtered absolute state differences using P/Y-code
measurements, shown in the last row of Table 5, are superior to the RGPS filter perform-
ance (Table 2), and are close to comparable with the existing Shuttle rendezvous system
(Table 3). Note that flight data results are not known to be available for deterministic
P/Y-code absolute state differences, nor are flight results from an RGPS-type filter using
P/Y-code measurements. ‘

Also note that none of the flight data results presented utilize carrier phase data, which is
commonly used in static surveying applications to achieve centimeter-level relative posi-
tioning. Carrier phase measurements are analogous to a very accurate pseudo-range
measurement. Based on the flight data results presented above, it may be hypothesized
that improvements in position knowledge such as might be achieved with carrier phase
processing cannot necessarily be counted upon to significantly improve semi-major axis
knowledge. Based on Figure 2, one might argue that even were position known to better
than 1 centimeter, if velocity knowledge on the order of 0.1-1 millimeters per second
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were not also achieved (along with good correlation among position and velocity errors),
then SMA knowledge could not be improved over existing levels of performance.

CONCLUSION

This paper has argued that achieving good semi-major axis knowledge should be an im-
portant consideration in orbit determination applications. Nevertheless, flight data results
from a number of Space Shuttle GPS experiments, employing a number of different GPS
receivers and navigation filtering approaches, indicate that semi-major axis is often not
determined very accurately in space applications of GPS. It has been argued, and the
flight data generally support, that the lack of good semi-major axis knowledge is primar-
ily due to a poor velocity solution and a lack of proper filtering to provide good radial
and speed error correlation. Use of carrier phase data does not appear to improve this
situation, unless it is accompanied by proper filtering that accounts for the orbital dy-
namics and the correlations they impose on the dynamics of this problem. It is quite pos-
sible that the existence of this issue can be attributed to a lack of awareness on the part of
the GPS community about the importance of semi-major axis knowledge. Several simple
equations, rules of thumb, and charts concerning the semi-major axis that the authors
have found useful in orbit determination analysis have been presented in an attempt to
raise awareness of this issue among the GPS community. It is hoped that this work will
begin to stimulate innovations that will lead to better orbital GPS orbit determination per-
formance.

ACKNOWLEDGEMENTS

Cary Semar of The Boeing Company Space and Defense Systems — Houston Division
and the staff and support contractors of the Flight Design and Dynamics Division of
NASA Johnson Space Center provided much of the data from Shuttle flights of the Hon-
- eywell EGI and SIGI and the Litton EGI. Lou Zyla of The Boeing Company Space and
Defense Systems — Houston Division provided the data from the STS-51 Shuttle GPS

experiment.

REFERENCES

1. R. Bate, D. Mueller, and J. White, Fundamentals of Astrodynamics, Dover, New York, 1971.

2. W. Lear, “Orbital Elements Including the J, Harmonic,” Report No. 86-FM-18/JSC-22213, Rev. 1,
Mission Planning and Analyéis Division, NASA Johnson Space Center, 9/87.

3. Y. Park, et al,, “Flight Test Results from Realtime Relative GPS F light Experiment on STS-69,” Space
Flight Mechanics 19935.

4. C. Schroeder, B. Schutz, and P.A.M. Abusali, “STS-69 Relative Positioning GPS Experiment,” Space
Flight Mechanics 1995.

5. G. Moreau and H. Marcille, “FD1 Post-Flight Analysis and Evaluation Report,” Matra Marconi Space
France Report No. ARPK-RP-SYS-3744-MMT, 11/8/97.

6. E. Schiesser, et al. “Results of STS-80 Relative GPS Navigation Flight Experiment,” Space Flight Me-
chanics 1998.

7. M. Lisano and R. Carpenter, “High-Accuracy Space Shuttle Reference Trajectories for the STS-77
GPS Attitude and Navigation Experiment (GANE),” Space Flight Mechanics 1997,

14



